At the Intersection of Probabilistic Inference and Exploration Methods

Dinghuai Zhang 2022.12

Sampling from an unnormalized energy function

Given
$$p^*(x) \propto R(x) = \exp(-E(x))$$

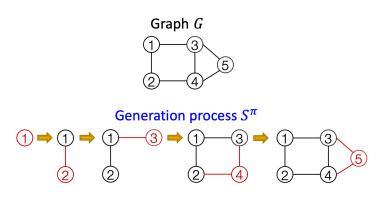
- Traditional: MCMC
- Amortized
 - Variational inference with probabilistic models (e.g., normalizing flows)
 - trained with KL
 - "mean-seeking" / "zero-avoiding" issues

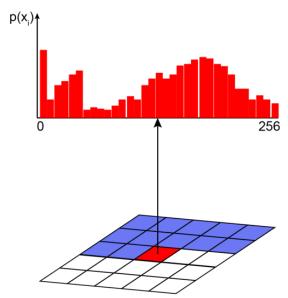
Divergence measures and message passing. Tom Minka, 2005.

- GFlowNets (generative flow networks)
 - treat sampling as a (sequential) decision-making process
 - + RL insights: exploration for probabilistic inference!

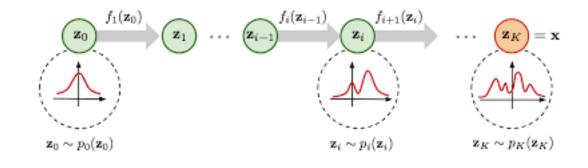
Examples of sequential sampling

Auto-regressive models

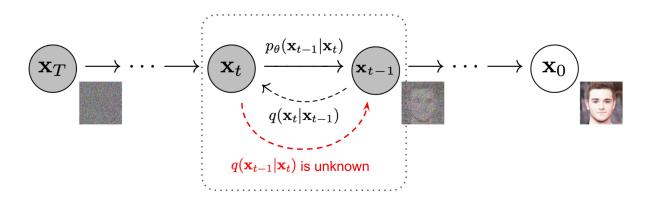




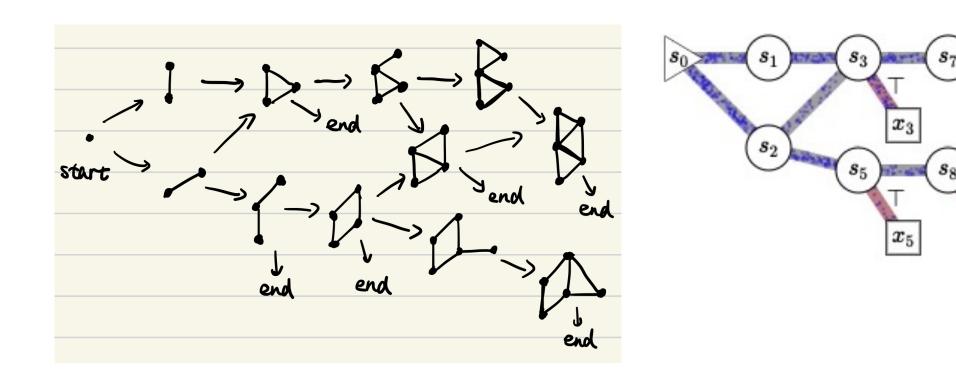
Normalizing flows



Diffusion models



Abstract the graph generation example...

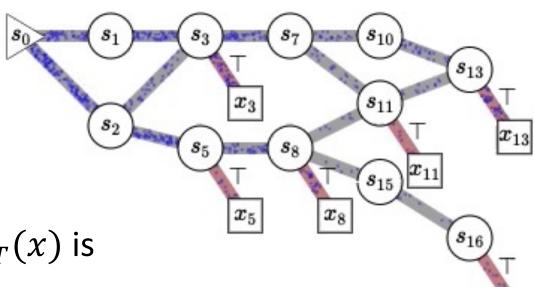


GFlowNets Basics

- To generate $x \in X$
- \top = terminating action
- $P_T(x)$: terminating prob

• Goal: learn a GFlowNet such that $P_T(x)$ is proportional to given reward R(x)

$$R(\mathbf{x}) = \sum_{ au=(\mathbf{s}_0 o\dots o\mathbf{s}_n),\mathbf{s}_n=\mathbf{x}} F(au)$$
 amount of "water" in au



Training criterion

- Parameterize the flow of edge / transition: $F(s \rightarrow s')$
 - Flow matching criterion / conservation law: "in-flow" = "out-flow"
 - $\sum_{s} F(s \rightarrow s') = \sum_{s''} F(s' \rightarrow s'') + R(s')$
 - We can also define $F(s' \to s_f) = R(s')$
- Parameterize: $P_F(s'|s)$, $P_B(s|s')$, F(s)
 - Forward and backward policy
 - $P_F(s'|s) = \frac{F(s \to s')}{F(s)}, P_B(s|s') = \frac{F(s \to s')}{F(s')}$
 - Detailed balance criterion: $F(s)P_F(s'|s) = F(s')P_B(s|s')$
- And others ...

Regarding generative modeling

- GFlowNet is a general framework that includes most generative models as special cases
 - Hierarchical VAEs
 - Diffusion models
 - Auto-regressive models
 - Normalizing flows, ...

Unifying Generative Models with GFlowNets. Arxiv 2022.

• ... and could be further combined with energy-based learning to learn from data (set), rather than target density function

Energy-based model

$$p_{\phi}(\mathbf{x}) = \frac{1}{Z_{\phi}} \exp(-\mathcal{E}_{\phi}(\mathbf{x}))$$

• EBMs are usually trained with contrastive divergence (CD)

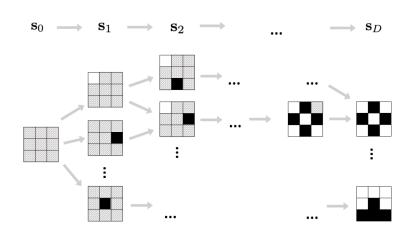
$$-\nabla_{\phi} \log p_{\phi}(\mathbf{x}) = \nabla_{\phi} \mathcal{E}_{\phi}(\mathbf{x}) + \nabla_{\phi} \log Z_{\phi}$$
$$= \nabla_{\phi} \mathcal{E}_{\phi}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}' \sim p_{\phi}(\mathbf{x}')} [\nabla_{\phi} \mathcal{E}_{\phi}(\mathbf{x}')]$$

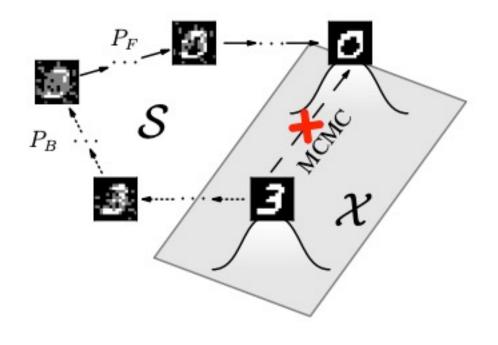
Simulated with truncated MCMC chains for negative samples

• This MCMC could be computationally expensive, and suffer from slow mixing under multi-modal settings.

Energy-based GFlowNets

- We propose to jointly train an EBM and a GFlowNet
 - EBM serves as the reward for GFlowNet
 - GFlowNet provides negative samples for CD-like training





Exploration in Probabilistic inference

With such a "inference as control" framework, we could pour our RL expertises into probabilistic inference tasks...

- Policy = Sampler
 - Explore the target distribution landscape to cover all the modes
- Off-policy training
 - Training data do not necessary come from current model distribution
 - Amortized inference perspective

GFlowNets and Variational Inference. Arxiv 2022.

- A special case of GFlowNet achieves the same expected gradient with standard variational inference
- In general, GFlowNet provides additional off-policy learning capability
- Intrinsic exploration as intermediate reward
 - Add unsupervised RL reward into the "out-flow" of GFlowNets to encourage exploration
 Generative Augmented Flow Networks, 2022.

Intermediate rewards

- Original: $\sum_{S} F(S \to S') = \sum_{S''} F(S' \to S'')$
- Augmented flow matching

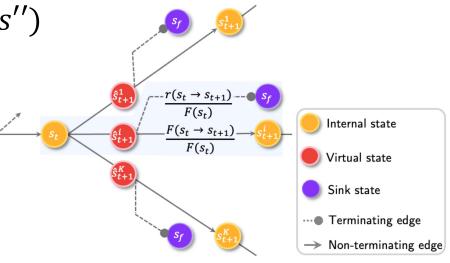
•
$$\sum_{s} F(s \to s') = \sum_{s''} F(s' \to s'') + r(s' \to s'')$$

Augmented detailed balance

•
$$P_F(s'|s) = \frac{F(s \rightarrow s') + r(s \rightarrow s')}{F(s)}$$

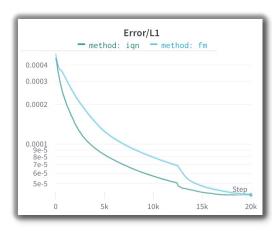
•
$$F(s)P_F(s'|s) = F(s')P_B(s|s') + r(s \rightarrow s')$$

Others ...



Ongoing directions

- Stochastic transition environment
 - Current GFlowNet formulation only supports deterministic transition
 - Generalizing (stochastic) detailed balance with transition model
 - $F(s)P_F(a|s)P(s'|s,a) = F(s')P_B(s,a|s')$
- Distributional flow matching
 - Distributional RL generalizes scalar Q-function to be a distribution
 - Richer learning signal: Q-learning becomes divergence minimization
 - We could parameterize flow's different quantiles
 - Quantile regression version of flow matching
 - Preliminary result in hypergrid



Exploration problems

Trade-off exploration vs. exploitation

- Bandits / Online learning
- Reinforcement learning
- Black-box optimization
- Active learning
- •

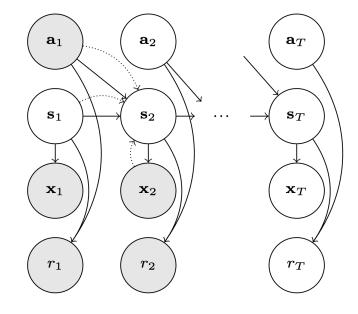
Next I would talk about examples of our work on using probabilistic methods to achieve better exploration.

Structured exploration in RL

 In realistic settings such as partially observed MDP (POMDP), the true states of environment is not observed

Previous works:

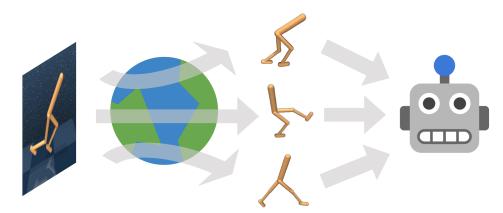
- Extract deterministic feature: s = f(x), making decision conditioned on s: $\pi(a|s)$
- Model the belief of true state p(s|x) with a world model, but only use one sample or take mean of p(s|x) Information



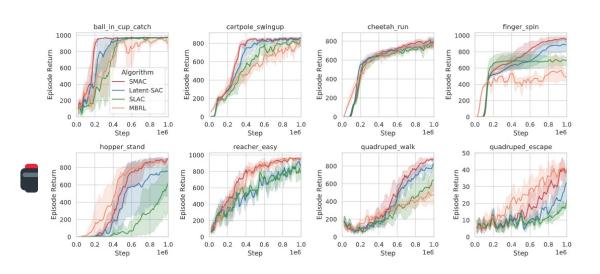
Information is lost! Need to take the whole distribution into account

Latent State Marginalization

- We propose to marginalize out all the possible latents in belief distribution: $\pi(a|x) = \int \pi(a|s)p(s|x)ds$
 - p(s|x) is from a world model, or unstructured prior



- Address entropy lower bound estimation for MaxEnt RL training
- Conduct experiments on various control tasks



Treating Black-box Opt in a Bayesian way

Optimization is the limit of sampling

•
$$\mathbf{m}^* = \underset{\mathbf{m} \in \mathcal{M}}{\operatorname{arg\,max}} f(\mathbf{m}) \iff p(m) \propto \exp\left(\frac{f(m)}{T}\right), T \cong 0$$

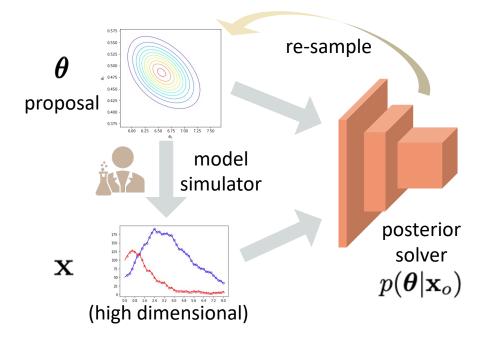
- Special constraint:
 - Limited number of query for each round
 - Black-box oracle

Treating Black-box Opt in a Bayesian way

We show that it is closely related to likelihood-free Bayesian inference (LFI)

$$p(oldsymbol{ heta}|\mathbf{x}_o) \propto p(oldsymbol{ heta}) \underbrace{p(\mathbf{x}_o|oldsymbol{ heta})}_{?}$$
 ("o" means observation)

- Limited number of samples from likelihood $\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})$ for each round
- Intractable likelihood function



Unifying LFI and Black-Box Opt

- Assume \mathcal{E} denotes a Boolean event:
 - "generated drug m has good property"
- Then we have a intriguing connection between the two fields! We then bridge / design (more than ten) algorithms from the two worlds

	Likelihood-free inference	Black-box optimization
Element	$(oldsymbol{ heta}, \mathbf{x})$	(\mathbf{m},s)
Target	$p(\boldsymbol{\theta} \mathbf{x}_o)$	$p(\mathbf{m} \mathcal{E})$
Constraint	limited simulation: $\mathbf{x} \sim p(\mathbf{x} \boldsymbol{\theta})$ intractable likelihood: $p(\mathbf{x} \boldsymbol{\theta})$	limited query: $s \sim f(\mathbf{m})$ black-box oracle: $f(\mathbf{m})$

Table 1: Correspondence between likelihood-free inference and black-box optimization.

Thank you for listening!

- Also, huge thanks to all my collaborators and advisors!
- Questions?
- More info at my personal website

